

TransFed: Epitomizing Focal Modulation in Transformer-based Federated Setup

Tajamul Ashraf¹, Fuzayil², Iqra Altaf Gillani²

¹ IIT Delhi, India ² NIT Srinagar, India

Problem Characterization

Experiments

Transformers utilize self-attention for global interactions, resilient to shifts. Self-attention mechanism is now being applied in *federated learning*, combined with the (FedAvg) algorithm for improved performance.

Focal Modulation

Given a feature map $X \in \mathbb{R}^{H \times W \times C}$, a generic encoding generates $y_i \in \mathbb{R}^C$ for each visual token x_i via interaction T with X and aggregation M over contexts. Focal modulation [1] refines y_i using early aggregation:

 $y_i = T_2(M(i, X), x_i).$

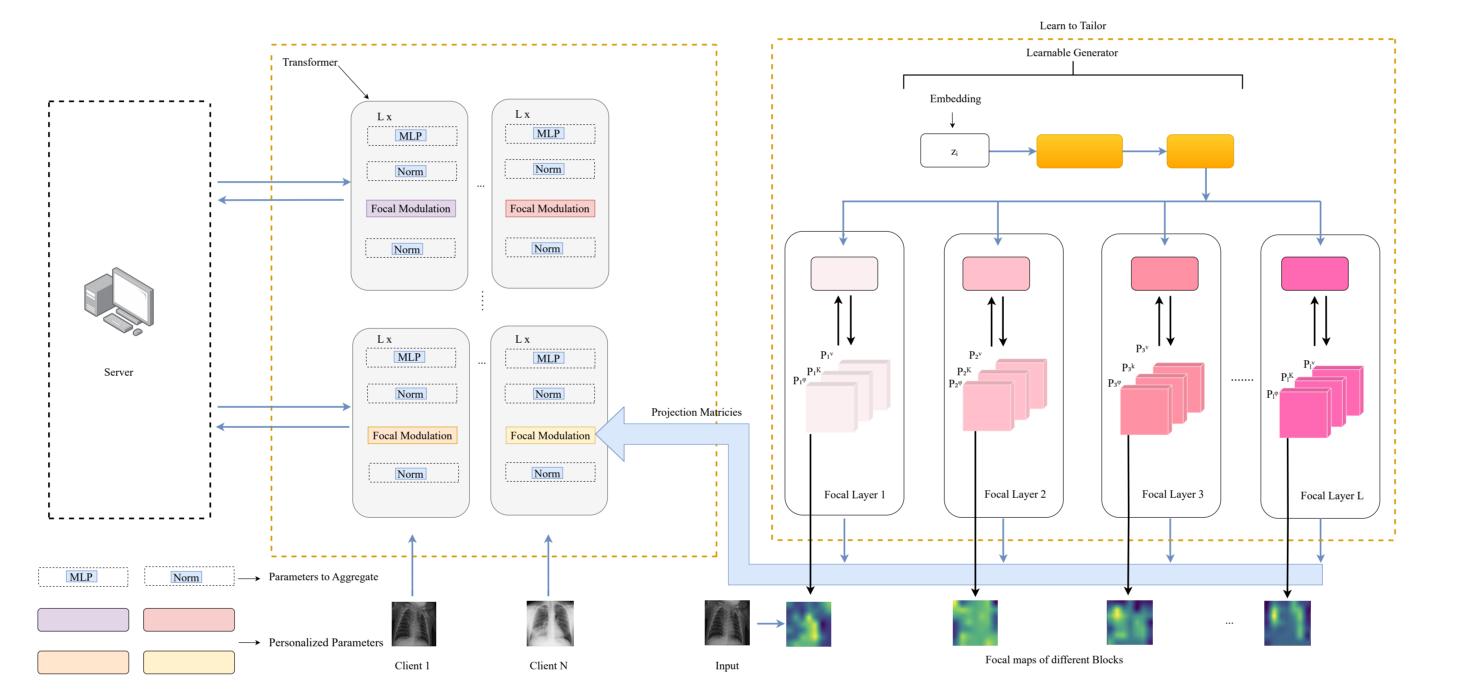
In Equation (1), Focal Modulation is instantiated as: $y_i = q(x_i) \odot m(i, X),$

where $q(\cdot)$ is a query projection , \odot is element-wise

TransFed uses DINO [2]. The Focal modulation mechanism operates on the queries, keys, and values, denoted as $Q = MP_Q$, $K = MP_K$, and $V = MP_V$, respectively. We concatenate these projection parameters into $P = [P_Q, P_K, P_V]$ for simplicity. By utilizing a visual feature map $X \in \mathbb{R}^{H \times P \times C}$ as the input, a standard encoding process produces a feature representation $y_i \in \mathbb{R}^C$ for each visual token (query) $Q_i \in \mathbb{R}^C$.

Proposed Solution: Custom Learning

In TransFed, a Learnable generator $h_{\phi}(z_i)$ at the server, parameterized by ϕ , takes a client's embedding vector $z_i \in \mathbb{R}^D$ as input. The generator produces projection parameters $P_i = h_{\phi}(z_i)$, decomposed into query, key, and value matrices (P_{Qi} , P_{Ki}, P_{Vi}) for focal-modulation.



Experiments were conducted on pneumonia benchmark datasets: Kermany [3] and RSNA [4]. Two partitioning techniques were employed to emulate non-IID scenarios.

Dataset	Task	Clients	Total Samples	Model
RSNA [4]	Image Classification	100/200	30227	FocalNet
Kermany [3]	Image Classification	100/200	5,232	FocalNet

Performance Analysis

	RSNA dataset			Kermany dataset				
# distribution	Pathological	Pathological	Beta	Beta	Pathological	Pathological	Beta	Beta
# no. of clients	100	200	100	200	100	200	100	200
Local-T	84.55±0.15	82.21±0.08	69.94±0.13	66.68±0.13	55.91 ± 0.17	49.25±0.11	27.87±0.12	23.34 ± 0.10
FedAvg-T	50.42 ± 4.22	46.28 ± 4.23	61.85 ± 1.5	59.23 ± 1.93	34.02 ± 0.88	30.20 ± 0.95	38.64 ± 0.22	34.89 ± 0.4
FedPer-T	89.86 ± 0.89	89.01±0.12	79.41 ± 0.16	77.70 ± 0.14	67.23 ± 0.32	61.72 ± 0.16	37.19 ± 0.18	29.58 ± 0.14
pFedHN-T	82.26 ± 0.61	77.57 ± 0.52	71.45 ± 0.87	68.13 ± 0.67	53.08 ± 0.72	39.94±0.91	33.25 ± 0.77	29.14±0.9
Fed TP	79.75 ± 0.22	75.46 ± 0.11	77.25 ± 0.69	71.13 ± 0.84	48.61 ± 0.45	46.05±0.47	36.63 ± 0.98	25.13±0.3
Vanilla -T	91.83±0.27	91.28±0.12	89.23±0.78	87.77±0.37	88.67±0.54	88.23±0.11	87.74±0.12	87.26±0.8
TransFed	92.67±0.74	$91.34 {\pm} 0.86$	88.49±0.38	88.16 ± 0.33	$89.80 {\pm} 0.23$	87.73±0.74	87.34±0.92	86.98±0.6

Iable 2: TransFed's test accuracy compared with diverse transformer-based approaches in non-IID scenarios.

Customized Part	RSN/	7	Kermany	
	Pathological	Beta	Pathological	Beta

multiplication and $m(\cdot)$, a context aggregation.

Client 1	Original Images	FedAvg 1	Vanilla T	Local T
Client 2				
Client 3				
Client 4				
Client 5				

Figure 1: Comparing focal maps of Local-T, FedAvg-T, and Vanilla-T across clients, we see local training and

Vanilla-T emphasizes task details, while FedAvg-T disrupts such information.

Problem statement: Mitigating data heterogeneity and building a tailored model

In a federated scenario, N clients with local datasets $D_i = \{(x_i^{(j)}, y_i^{(j)})\}_{j=1}^{m_i}, 1 \le i \le N$, contribute to a total dataset D of size $M = \sum_{i=1}^{N} m_i$. The model for client

(3)

Figure 2: Combining Local Retention and Server-Based Aggregation featuring localized focal modulation layers and central parameter aggregation, fostering collaboration among clients. The `learn-to-tailor' mechanism employs a server-based generator to create unique projection matrices in L transformer blocks, enhancing adaptability

Vanilla Tailoring

In TransFed, parameters are locally trained and aggregated on the server, akin to FedAvg. The FM layer, with parameters P_i , and other layers, with ξ , constitute the tailored model $\theta_i = (P_i, \xi)$. Local training is iterated over multiple rounds, updating the model $f(P_i^{t,k}, \bar{\xi}_i^{t,k}; \cdot)$. $P_i^{t,k}$ retains local information, and $\bar{\xi}_i^{t,k}$

Fo	ocal Modulation	92.67 ±0.74	88.49 ±0.38	89.80 ±0.23	87.344±0.92
Μ	ILP Layers	88.45±0.14	86.36±0.17	87.76±0.14	85.97±0.16
N	ormalization Layers	89.56±0.45	86.55±0.27	86.23±0.37	87.22±0.39
Er	ncoder	82.34±0.43	83.65±0.52	83.79±0.24	83.95±0.37

Table 3: Average test accuracy of focal models with varying customized components.

Generalization to Novel Clients

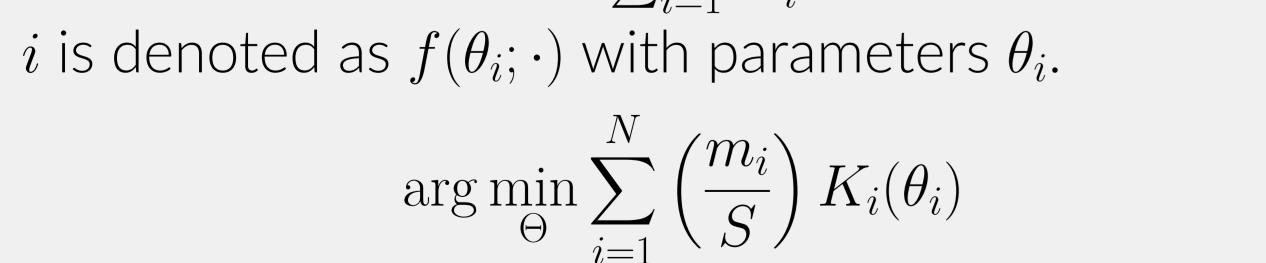
Method	Personalization	Client Accuracy (%)	Convergence Time (epochs)
pFedMe	All Parameters	78.3	8
pFedHN (Embedding)	Clientwise Embedding	79.5	6
pFedHN (Hypernetwork)	Whole Hypernetwork	80.2	5
FedRod	Last Classification Layer	77.8	10
Vanilla Personalized-T	Self-Attention Projection Matrices	76.7	12
FedTP	Self Attention Layers	81.2	4
TransFed (Learnable Generator)	Focal Modulation Layers	82.6	3

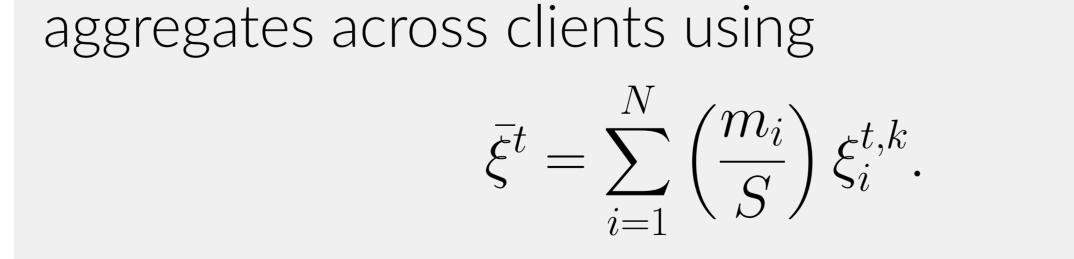
Table 4: Generalization Performance Comparison on RSNA dataset.

Conclusion

Introduced TransFed, a transformer-based federated learning framework addressing FM limitations in non-IID scenarios. Enhanced FM through client tailoring via a central Learnable generator. Experimental results show TransFed outperforming with 8% and 12% increases on RSNA and Kermany, respectively, despite slower training speed.

References





[1] J. e. a. Yang, ``Focal modulation networks," *NuerIPS*, 2022.

(4)

[2] M. e. a. Caron, ``Emerging properties in self-supervised vision transformers," in ICCV, pp. 9650--9660, 2021.

- [3] D. e. a. Kermany, ``Labeled optical coherence tomography (oct) and chest x-ray images for classification," Mendeley data, vol. 2, no. 2, p. 651, 2018.
- [4] X. e. a. Wang, ``Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases," in CVPR, pp. 2097--2106, 2017.