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Transformers

Transformers utilize self-attention for global interactions,
resilient to shifts. Self-attention mechanism is now be-
ing applied in federated learning, combined with the (Fe-
dAvg) algorithm for improved performance.

Focal Modulation

Given a feature mapX ∈ R
H×W×C , a generic encod-

ing generates yi ∈ R
C for each visual token xi via in-

teraction T with X and aggregation M over contexts.
Focal modulation [1] refines yi using early aggregation:

yi = T2(M(i, X), xi). (1)

In Equation (1), Focal Modulation is instantiated as:
yi = q(xi) ⊙ m(i, X), (2)

where q(·) is a query projection ,⊙ is element-wise
multiplication and m(·), a context aggregation.
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Figure 1:Comparing focal maps of Local-T, FedAvg-T, and Vanilla-T across clients, we see local training and
Vanilla-T emphasizes task details, while FedAvg-T disrupts such information.

Problem statement: Mitigating data
heterogeneity and building a tailored model

In a federated scenario, N clients with local datasets
Di = {(x

(j)
i , y

(j)
i )}mi

j=1, 1 ≤ i ≤ N , contribute to a total
dataset D of size M =

∑N
i=1 mi. The model for client

i is denoted as f (θi; ·) with parameters θi.

arg min
Θ

N
∑

i=1

(

mi

S

)

Ki(θi) (3)

Problem Characterization

TransFed uses DINO [2]. The Focal modulation mechanism op-
erates on the queries, keys, and values, denoted as Q = MPQ,
K = MPK , and V = MPV , respectively. We concatenate these
projection parameters into P = [PQ, PK, PV ] for simplicity. By uti-
lizing a visual feature map X ∈ R

H×P×C as the input, a standard
encoding process produces a feature representation yi ∈ R

C for
each visual token (query) Qi ∈ R

C.

Proposed Solution: Custom Learning

In TransFed, a Learnable generator hφ(zi) at the server, parameterized by φ, takes
a client's embedding vector zi ∈ R

D as input. The generator produces projection
parameters Pi = hφ(zi), decomposed into query, key, and value matrices (PQi,
PKi, PV i) for focal-modulation.
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Figure 2:Combining Local Retention and Server-BasedAggregation featuring localized focal modulation layers
and central parameter aggregation, fostering collaboration among clients. The `learn-to-tailor’ mechanism employs

a server-based generator to create unique projection matrices in L transformer blocks, enhancing adaptability

Vanilla Tailoring

In TransFed, parameters are locally trained and aggre-
gated on the server, akin to FedAvg. The FM layer,
with parameters Pi, and other layers, with ξ, consti-
tute the tailored model θi = (Pi, ξ). Local training
is iterated over multiple rounds, updating the model
f (P t,k

i , ξ̄
t,k
i ; ·). P

t,k
i retains local information, and ξ̄

t,k
i

aggregates across clients using

ξ̄t =
N
∑

i=1

(

mi

S

)

ξ
t,k
i . (4)

Experiments

Experiments were conducted on pneumonia benchmark datasets: Kermany
[3] and RSNA [4]. Two partitioning techniques were employed to emulate
non-IID scenarios.

Dataset Task Clients Total Samples Model
RSNA [4] Image Classification 100/200 30227 FocalNet

Kermany [3] Image Classification 100/200 5,232 FocalNet

Table 1:Datasets and Models.

Performance Analysis

RSNA dataset Kermany dataset
# distribution Pathological Pathological Beta Beta Pathological Pathological Beta Beta
# no. of clients 100 200 100 200 100 200 100 200
Local-T 84.55±0.15 82.21±0.08 69.94±0.13 66.68±0.13 55.91±0.17 49.25±0.11 27.87±0.12 23.34±0.10

FedAvg-T 50.42±4.22 46.28±4.23 61.85±1.5 59.23±1.93 34.02±0.88 30.20±0.95 38.64±0.22 34.89±0.45

FedPer-T 89.86±0.89 89.01±0.12 79.41±0.16 77.70±0.14 67.23±0.32 61.72±0.16 37.19±0.18 29.58±0.14

pFedHN-T 82.26±0.61 77.57±0.52 71.45±0.87 68.13±0.67 53.08±0.72 39.94±0.91 33.25±0.77 29.14±0.98
Fed TP 79.75±0.22 75.46±0.11 77.25±0.69 71.13±0.84 48.61±0.45 46.05±0.47 36.63±0.98 25.13±0.35
Vanilla -T 91.83±0.27 91.28±0.12 89.23±0.78 87.77±0.37 88.67±0.54 88.23±0.11 87.74±0.12 87.26±0.85
TransFed 92.67±0.74 91.34±0.86 88.49±0.38 88.16±0.33 89.80±0.23 87.73±0.74 87.34±0.92 86.98±0.64

Table 2:TransFed's test accuracy compared with diverse transformer-based approaches in non-IID scenarios.

Analysis of Different Adapted Parts

Customized Part RSNA Kermany
Pathological Beta Pathological Beta

Focal Modulation 92.67 ±0.74 88.49 ±0.38 89.80 ±0.23 87.344±0.92
MLP Layers 88.45±0.14 86.36±0.17 87.76±0.14 85.97±0.16
Normalization Layers 89.56±0.45 86.55±0.27 86.23±0.37 87.22±0.39
Encoder 82.34±0.43 83.65±0.52 83.79±0.24 83.95±0.37

Table 3:Average test accuracy of focal models with varying customized components.

Generalization to Novel Clients

Method Personalization Client Accuracy (%) Convergence Time (epochs)
pFedMe All Parameters 78.3 8

pFedHN (Embedding) Clientwise Embedding 79.5 6
pFedHN (Hypernetwork) Whole Hypernetwork 80.2 5

FedRod Last Classification Layer 77.8 10
Vanilla Personalized-T Self-Attention Projection Matrices 76.7 12

FedTP Self Attention Layers 81.2 4
TransFed (Learnable Generator) Focal Modulation Layers 82.6 3

Table 4:Generalization Performance Comparison on RSNA dataset.

Conclusion
Introduced TransFed, a transformer-based federated learning framework ad-
dressing FM limitations in non-IID scenarios.Enhanced FM through client tai-
loring via a central Learnable generator. Experimental results show TransFed
outperforming with 8% and 12% increases on RSNA and Kermany, respectively,
despite slower training speed.
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