This WACYV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

TransFed: A way to epitomize Focal Modulation using Transformer-based
Federated Learning

Tajamul Ashraf Fuzayil Bin Afzal Mir Igra Altaf Gillani
IIT Delhi NIT Srinagar NIT Srinagar
New Delhi, India Srinagar, India Srinagar, India

www.tajamulashraf.com

Abstract

Federated learning has emerged as a promising
paradigm for collaborative machine learning, enabling
multiple clients to train a model while preserving data pri-
vacy jointly. Tailored federated learning takes this concept
further by accommodating client heterogeneity and facili-
tating the learning of personalized models. While the uti-
lization of transformers within federated learning has at-
tracted significant interest, there remains a need to investi-
gate the effects of federated learning algorithms on the lat-
est focal modulation-based transformers. In this paper, we
investigate this relationship and uncover the detrimental ef-
fects of federated averaging (FedAvg) algorithms on Focal
Modulation, particularly in scenarios with heterogeneous
data. To address this challenge, we propose TransFed, a
novel transformer-based federated learning framework that
not only aggregates model parameters but also learns tai-
lored Focal Modulation for each client. Instead of em-
ploying a conventional customization mechanism that main-
tains client-specific focal modulation layers locally, we in-
troduce a learn-to-tailor approach that fosters client collab-
oration, enhancing scalability and adaptation in TransFed.
Our method incorporates a hyper network on the server, re-
sponsible for learning personalized projection matrices for
the focal modulation layers. This enables the generation
of client-specific keys, values, and queries.Furthermore, we
provide an analysis of adaptation bounds for TransFed us-
ing the learn-to-customize mechanism. Through intensive
experiments on datasets related to pneumonia classifica-
tion, we demonstrate that TransFed, in combination with the
learn-to-tailor approach, achieves superior performance in
scenarios with non-I1ID data distributions, surpassing exist-
ing methods. Overall, TransFed paves the way for leverag-
ing focal Modulation in federated learning, advancing the
capabilities of focal modulated transformer models in de-
centralized environments.
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1. Introduction

Federated learning is a concept aimed at training a col-
lective global model by employing data from numerous
clients, all while upholding the confidentiality of the data
[21]. To address concerns regarding data privacy and com-
munication overhead, each client trains its local model and
shares only the model updates usually weights and param-
eters with the server. However, learning a single global
model may be ineffective when dealing with heterogeneous
data and system variations across different clients. Tailored
federated learning has emerged as an extension of the fed-
erated learning approach to address this challenge. This
paradigm centers around the learning of tailored models,
diverging from using a single global model while simul-
taneously harnessing the advantages of collaborative train-
ing [26], [25]. Numerous methods have emerged to tackle
the issue presented by non-IID (non-independent and iden-
tically distributed) data distribution among clients. The ma-
jority of current federated learning frameworks predomi-
nantly utilize CNNs, which demonstrate susceptibility to
variations in diverse data [8]. Transformers [28], on the
other hand, utilize a self-attention mechanism to capture
global interactions among inputs, rendering them more re-
silient to distribution shifts and data heterogeneity [24].

Inspired by the success of self-attention, recent research
has explored the use of transformers as the underlying net-
work architecture for federated learning, in combination
with the fundamental federated averaging (FedAvg) algo-
rithm [21]. Furthermore, a novel architecture based on
focal modulation has been proposed to explore alternative
approaches for modeling input-dependent long-range inter-
actions [32]. Focal modulation networks leverage a focal
modulation module instead of self-attention, allowing for
the effective modeling of interactions between tokens in vi-
sual data. While early experiments have demonstrated en-
couraging outcomes in transformers based federated learn-
ing, a comprehensive investigation into the influence of
federated learning algorithms on focal modulation remains
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pending. Such algorithms might restrict the capabilities of
focalnet based transformers [32] in the context of feder-
ated learning. Considering the potential of focal-modulated
based federated learning, it is imperative to conduct fur-
ther research to explore this topic comprehensively. Re-
cent studies have highlighted the crucial role of focal mod-
ulated layers in transformers [32], [30], [37], emphasizing
their significance compared to other architectures. Expand-
ing on this observation, we conducted an inquiry into the
impact of focal modulation on federated learning. The ex-
perimentation involved several model variations: 1) Local-
T, entailing the training of individual ViT models on each
client; 2) FedAvg-T, implementing the FedAvg algorithm
for the training of a global focalnet model; and 3) Vanilla
Tailored-T, which retained local focal modulation while uti-
lizing FedAvg for server-side aggregation of other parame-
ters. To experiment, we sampled a set of images from the

Client -
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Figure 1. Comparing focal maps of Local-T, FedAvg-T, and
Vanilla-T across clients, we see local training and Vanilla-T em-
phasize task details, while FedAvg-T disrupts such information.

RSNA pneumonia dataset [3 |]. The public dataset is a well-
known and widely used in medical imaging. It contains an
extensive collection of chest X-ray images with labels in-
dicating the presence or absence of pneumonia [31], con-
sisting of two classes (normal and pneumonia), across five
clients, as incorporating data from five clients helped cap-
ture a broader range of variations and patterns in the dataset.
As we increase the number of clients, the communication
required between clients and the central server also esca-
lates. The generation of attention maps for analysis was
carried out using the Attention Rollout technique, as out-
lined in prior work [1]. The visual representation in Fig-
ure 1 showcases the attention maps produced through the
mentioned approaches, accompanying the original images.
Our assessment indicates that both the Local-T and Vanilla
Tailored-T models adeptly identified crucial information in
the images, indicated by the highlighted regions in yellow.
At the same time, FedAvg-T was unsuccessful in generat-
ing meaningful focal modulation maps [32]. Additionally,
the scalability of focal modulated layers is limited as their
number increases linearly with the number of clients. There
are limitations in adapting tailored focal Modulation to new
clients, as it necessitates retraining all the focal modulation

layers. In light of these constraints, we have introduced a
novel federated learning framework called TransFed, which
employs a learn-to-tailor concept replacing the conventional
approach of customization based on the focalnet model.

In the TransFed framework, a Learnable generator is
trained on the server to generate matrix projections within
the focal modulation layers. These matrices enable the cre-
ation of client-specific queries, keys, and values while ag-
gregating and sharing other model parameters. Utilizing the
learn-to-tailor mechanism for focal modulation layers via
the Learnable generator, we can efficiently distribute pa-
rameters across clients and generate customized focal mod-
ulation layers. TransFed not only achieves exceptional ac-
curacy but also demonstrates scalability as the number of
clients increases and showcases strong adaptability to new
clients.

The primary contributions are summarized as follows:

¢ We introduce TransFed, an innovative federated learn-
ing framework built upon Focal modulation architec-
ture. TransFed directly addresses the limitations of
FedAvg when applied to focal modulation in heteroge-
neous data scenarios. By facilitating the customization
of focal modulation for individual clients, TransFed
significantly improves performance within the context
of tailored federated learning.

* Our proposal introduces a learn-to-tailor concept to en-
hance the utilization of client cooperation in the tai-
lored layers. This mechanism aims to improve the
scalability and adaptation capabilities of TransFed.

e Comprehensive experiments were carried out on
benchmark datasets for pneumonia, encompassing var-
ious scenarios of non-IID data distribution. The re-
sults of these experiments unequivocally demonstrate
that TransFed outperforms a wide range of benchmark
methods in tailored federated learning, specifically in
image-based tasks, establishing TransFed as the state-
of-the-art solution in this domain.

The rest of the article is organized as follows: Section 2
provides a brief overview of prior work on tailored feder-
ated learning, transformers, and Learnable generators. Sec-
tion 3 outlines the tailored federated learning formulation
with transformers, including two customization methods:
vanilla and learn-to-tailor. Section 4 presents experimental
results and discussions, thoroughly analyzing the findings.
In Section 5, TransFed’s limitations are discussed, conclud-
ing with insights into future directions.

2. Related Work

Various approaches have been proposed to address the
heterogeneity among clients in tailored federated learning
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[35], [34], [33]. One approach involves fine-tuning the
global model using client’s local datasets to obtain tailored
parameters [29], [19], [7]. Another strategy is to incorporate
proximal regularization terms to handle client drift issues
resulting from statistical heterogeneity, as demonstrated by
FedProx [15], pFedMe [27], and Ditto [14]. Conversely,
FedAlign [22] addresses the data heterogeneity challenge
in federated learning from the perspective of local learning
generality rather than proximal restriction.

Knn-Per [20] proposes a hybrid model that combines
two existing models. The local model in this approach uti-
lizes a k-nearest neighbors method, which requires stor-
ing all the features of the samples. Some methods, like
FedMD [12] and FedGen [36], employ knowledge distil-
lation from a global teacher model to improve the flexibil-
ity of tailored model architectures on client devices. These
methods enable clients to obtain more robust tailored mod-
els. To address scenarios where data distribution varies
among clients or inherent partitions exist, clustered fed-
erated learning (CFL) [25], privacy-preserving federated
adaptation (PFA) [17], and FedAMP [10] utilize clustering
approaches to train federated learning models for homoge-
nous client groups. This ensures that the training process
is better suited for such cases. FedTP [13] delves deeper,
particularly into the ViT [6]; they only personalized the at-
tention maps of the transformer model on each client, while
the remaining parts remain as shared components. It adopts
a parameter decoupling approach for cross-attention to ac-
commodate data disparities. However, this strategy may in-
troduce optimization misalignment between attention and
the original head upon re-coupling, particularly in scenar-
ios involving heterogeneous data distributions. Other meth-
ods, such as FedPer [2], focus on learning tailored classifier
heads locally while sharing base layers.

In contrast to these existing works, our proposed Trans-
Fed framework utilizes a learn-to-customize mechanism to
train tailored focal-modulation layers within a transformer.
This mechanism effectively addresses client data hetero-
geneity, offering a novel approach to tailored federated
learning. The transformer model [28] was initially devel-
oped to enhance the efficiency of machine translation tasks.
Researchers have explored the applicability of transformer
models to vision tasks, resulting in developments like the
Vision Transformer (ViT) [6], DeTR [3], and DINO-based
models [4]; DINO is particularly noteworthy. As an early
exploration of using transformers in federated learning, Qu
et al. [23] conducted extensive empirical experiments and
demonstrated that transformers are more suitable than con-
volutional neural networks (CNNs) in federated learning
scenarios with heterogeneous data distributions. Our Trans-
Fed framework aims to harness the full potential of the
transformer architecture by training a tailored transformer
for each client. The mechanism of focal modulation cap-

tures the diversity of data using a trainable generator located
on the server. This generator produces projection parame-
ters within the focal modulation layers.

Recently, Jianwei et al. [32] introduced focal modulation
networks that incorporate a focal modulation mechanism to
model token interactions in vision tasks, entirely replacing
traditional focal modulation techniques. Crucial to the setup
are learnable generators [9], which entail neural networks
with the ability to produce weights for a larger target net-
work. This is achieved using a trainable embedding vec-
tor as an input. In the context of tailored federated learn-
ing, pFedHN was the first method to utilize a Learnable
generator [9], where the server’s Learnable generator gen-
erates tailored weights for local convolutional neural net-
works (CNNs) on each client. In a similar vein, pFedLA
[18] utilizes a trainable generator situated on the server to
generate combined weights pertaining to individual layers
of the local model across various clients. In contrast, Fed-
RoD [5] employs a local Learnable generator that generates
customized client predictors, considering additional inputs
such as the client’s class distributions. It is worth noting
that all these Learnable generator-based methods are specif-
ically designed for CNN architectures. However, TransFed
distinguishes itself by utilizing a Learnable generator that
generates projection matrices within the focal-modulation
layers of a transformer. This unique approach enables the
generation of client-specific queries, keys, and values.

3. Federated Learning by Tailored Focal Mod-
ulation

This section introduces our TransFed framework, which
is specifically designed to address heterogeneity and pro-
duce personalized, high-quality models for individual
clients. The key focus of TransFed is to learn tailored focal
modulation layers for each client, enabling effective cus-
tomization within the framework.

3.1. Problem Statement

In the context of visual tasks, the TransFed framework
incorporates the utilization of a traditional DINO model [4].
The initial step in processing the input sequence S, which
has a fixed length [, involves partitioning the images into
a sequential format during the image preprocessing phase
of the focalnet. Subsequently, this sequential representa-
tion is converted into an embedding matrix M, with dimen-
sions R™*™. The focal-modulation mechanism operates
on the queries, keys, and values, denoted as Q = M Pe,
K = MPX and V. = MPV, respectively. We concate-
nate these projection parameters into P = [P%, PX PV
for simplicity.

By utilizing a visual feature map X € R7*F*C a5 the
input, a standard encoding process produces a feature repre-
sentation g; € RC for each visual token (query) Q; € R¢.
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Figure 2. TransFed Overview: Combining Local Retention and Server-Based Aggregation. The architecture features localized focal
modulation layers and central parameter aggregation, fostering collaboration among clients. Additionally, the ‘learn-to-tailor’ mechanism
employs a server-based generator to create unique projection matrices in L transformer blocks, enhancing adaptability.

This generation is accomplished through the token’s inter-
action with its surroundings, including neighboring tokens,
and the aggregation of information across contexts. The
process involves the interaction function 7 and the aggre-
gation function A. Consequently, the refined representation
1; s obtained by combining the aggregated context features,
obtained through the function A at each location 7, with the
query (; through the interaction function 7.

Focal Modulation generates refined representation y; us-
ing an early aggregation procedure formulated as:

where the context features are first aggregated using A at
each location ¢, then the query interacts with the aggregated
feature based on 7 to form y;.

For the purpose of emulating a federated scenario, we
examine a collection of N clients designated by [N], with
each specific client 7 holding its own local datasetD; =
(z, yfj)):zl (1 < ¢ < N), consisting of m; sam-
ples drawn from a distinct data distribution P;. The total
dataset is denoted as D = Uie[ N D;, with a total size of
S = Zz]\il m;.

The customized model associated with client ¢, defined
by the parameters 6;, is denoted as f(6;;-). The optimiza-
tion objective is defined as follows:

N
arg min ; (TZ,) Ki(6:) @)

where K" (01) = E(w(j)i7y(j)i)eDi [l(f(917 (955]))7 (yz(]))]

Here,O = Hiﬁil represents the set of tailored parameters
for each client, and (-, -) denotes the per-sample loss func-
tion that is common to all clients. The selection of the loss
function for a specific task, whether it is a mean square er-
ror or cross-entropy loss, is contingent upon the nature of
the task.

3.2. Vanilla Tailoring of Focal Modulation

Federated learning’s popularity stems from global in-
sights via focal modulation layers. But using TransFed on
client layers can harm performance with diverse data. To
address this challenge, our solution involves tailored focal
modulation. This approach entails customizing certain lo-
cal layers while averaging other layers to maintain standard
insights. The diagram on the left side of the Figure 2 il-
lustrates the fundamental configuration of the vanilla focal
modulation customization.

In TransFed, parameters are locally trained and ag-
gregated on the server, similar to FedAvg. The focal-
modulation layer has projection parameters P;, while other
layers have parameters {. The tailored model, denoted as
0; = (P;, ), undergoes local training. This process is re-
peated for multiple communication rounds. Resulting in the
updated model f (Pf’k,{;tf ok -), where Pf’k is retained lo-
cally to store the tailored information of client i, and & *is
aggregated across the clients using Equation (2):

N .
&= (%)t &)

i=1
Consequently, the objective function of TransFed, as de-
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Algorithm 1 TransFed: Tailored Focal Modulation

Require: C' - number of communication rounds, L - number of
local epochs, « - learning rate of local update, /3 - learning rate
for global update.

Initialize parameters £°, 2°%, and ¢°;
for c = 1to C' do
Sample the set of clients C. < {1,...,N};
for i in C. do
é-c,() _ écfl;
o = (g
61'7 ={F" E7h
for L =1to Ldo
Sample mini-batch B; € D;;
07" — 07F — aVg, Li(0% 15 Bi);
end for
AP, = Pi, — Piy;
end for
& = Yicce €0
be = Pe1 — B Ve, TEVoPTAP;
Ze = 2e1 = BYicoe 14 Ve PEAP;
end for
return &', ¢, and 2*

rived from Equation (1), is to minimize the following loss:

N
argmin ) ("¢ Ku(Pg) @
i=1
where
N
Ki(Pi&) = 3} (5B yirep, (P &2) ) )

i=1

While the vanilla customization procedure generates tai-
lored focal-modulation layers through local training, it over-
looks the potential inherent client relationships, leading to
suboptimal tailored models. Moreover, the scalability of tai-
lored focal-modulation layers becomes an issue as the num-
ber of clients grows linearly. Additionally, the adaptation
capability of tailored focal Modulation is limited, requiring
retraining when novel clients are introduced to obtain spe-
cific focal-modulation layers for them.

3.3. Custom Learning for Focal Modulation

This section introduces TransFed, a framework that in-
corporates a learn-to-tailor approach to augment the exist-
ing vanilla customization mechanism for focal Modulation.

Algorithm 1 presents the TransFed process for parameter
updates in a federated learning scenario. It spans commu-
nication rounds (C) and local epochs (L), iterating through
clients to locally update model parameters (f) using mini-
batches. Global parameters ¢ and z; are also updated col-

lectively, yielding refined global parameters &', ¢f, and
z*. These enhancements encourage effective collaboration

among clients while retaining individual data characteris-
tics. In the TransFed approach, a Learnable generator [9]
is integrated into the server’s functionality, generating pro-
jection matrices intended for the focal-modulation layers of
individual clients (as illustrated on the right side of Figure
2). This design facilitates effective sharing of parameters
among the clients.

The Learnable generator at the server, denoted as
h(¢; z;) and parameterized by ¢, takes as input a learnable
embedding vector z; € RP associated with client 7, which
can either be a client-specific embedding or a fixed vector.
We implement the Learnable generator using simple fully
connected layers, where each transformer block’s last layer
is unique. The z; vector, the Learnable generator produces
the projection parameters P; = h(¢; z;) for client i, which
are decomposed into the query, key, and value projection
matrices for the focal-modulation mechanism, denoted as
P; = [Pgi, Pk, Py].

This approach enables the Learnable generator to learn
a set of projection parameters P; = h(¢; 2;)|1 < i < N for
tailored focal Modulation. Consequently, the tailored model
is represented as f(P;, &) = f(h(zi;0),;-), and loss
function is updated as follows:

N , .

= 3 (5 Bt yyen S (0(g520), & 27)),57)(6)

Tﬁis updated loss function computes the training loss for
client ¢ by applying the Learnable generator-generated pro-
jection parameters P; = h(¢; z;) alongside the standard pa-
rameters ¢ to the tailored model. The update mechanism
within each epoch is represented by the variable k, and the
local model parameter 6; is subjected to updates through
stochastic gradient descent (SGD), as defined by the fol-
lowing equation:

0F — 05 —aVe, K (077" By) 7

where B; represents a mini-batch extracted from D;.

Representing the collection of selected clients in each
round t as Cy. The gradients of ¢ and z; can be obtained
from Equation (6) using the chain rule:

VoKi= ) (ZZ) VoP! Oy, (®)
ieCt
V.. K; = ZC (52) Vel &, ©)

where AP; = Pg; — Pg; represents the change in projec-
tion parameters after K epochs of local updates.

During communication round ¢, updates are applied to
the Learnable generator parameter ¢ and the client embed-
ding z; through the utilization of computed gradients:

¢ = ¢t — BVLKITY (10)
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2=zt - v, KUY (11)

Contrasted with the standard customization method, the
learn-to-tailor approach within TransFed brings forth a
range of benefits. Firstly, it achieves effective parameter
sharing across clients while harnessing the focal modula-
tion mechanism’s potency in federated learning. Secondly,
its scalability accompanies an expanding client base, owing
to the shared Learnable generator with personalized embed-
ding vectors driving the focal modulation layer’s genera-
tion. Lastly, its adaptability extends to new clients whose
data remains unseen during training. The initial and fi-
nal aspects will undergo validation in Section IV. The mid-
dle aspect is substantiated by a comparison of parameter
counts between learn-to-customize and standard customiza-
tion. The Learnable generator, adopting an MLP architec-
ture, comprises parameters roughly equivalent to D;, x Dy,
where Dj, and D denote the dimensions of the hidden lay-
ers within the Learnable generator and the self-attention
projection parameters, respectively. In contrast, the cu-
mulative self-attention projection parameters in the stan-
dard customization rise linearly with the client count, i.e.,
N x Dg,. With a substantial client count (N > D),
learn-to-customize for focal modulation consumes fewer re-
sources.

4. Experiments

This section introduces the experimental configuration,
assesses the performance of our proposed model, and con-
ducts comparisons with several baseline methods across di-
verse learning scenarios. We introduce the benchmarks,
non-IID settings, model architectures used in our experi-
ments, and relevant implementation details.

4.1. Experimental Setup
4.1.1 Baselines

In our evaluation, we comprehensively compared TransFed
with various federated learning algorithms. We compared
TransFed against fundamental federated algorithms, includ-
ing FedAvg [21] and FedProx [15]. Additionally, we eval-
uated its performance against state-of-the-art customization
algorithms, including FedPer [2], pFedMe [27], and FedTP
[13], as well as Vanilla-based models. By including these
various algorithms in our comparison, we aimed to assess
the effectiveness and superiority of TransFed in achieving
customized and efficient federated learning. The selected
algorithms represent a range of approaches that tackle dif-
ferent aspects of customization in federated learning, allow-
ing us to evaluate TransFed’s performance with basic and
advanced techniques. This comprehensive evaluation pro-
vides valuable insights into the relative strengths and weak-
nesses of TransFed compared to existing state-of-the-art al-

Dataset Task Clients  Total Samples ~ Model
RSNA [31] Image Classification ~ 100/200 30227 FocalNet
Kermany [11] Image Classification 100/200 5,232 FocalNet

Table 1. Datasets and Models.

gorithms, further highlighting its potential as an advanced
customization approach in the domain of federated learn-
ing.

4.1.2 Non-IID Settings of Pnemunia Datasets

We conducted experiments on two widely used pneumonia
benchmark datasets: Kermany [ 1] and RSNA [31].We uti-
lized two partitioning techniques to emulate non-IID (non-
identically distributed) scenarios in our experiments.

The first strategy, the Pathological setting, involved ran-
domly assigning classes to each client in both the Kermany
and RSNA datasets. In this setting, the sample rate for
class ¢ on client ¢ was determined by a; ./ Zj a;,c, Where
aj,. was randomly generated from a uniform distribution
U(0.4,0.6). The second approach consisted of generating
a federated version of the datasets by randomly partitioning
samples with identical labels across clients. This partition-
ing was done using a symmetric Beta distribution with a pa-
rameter of o« = 0.3. By applying the Beta distribution, we
divided the samples among the clients in a federated man-
ner, ensuring a diverse distribution of samples for training.

To enhance the realism of the local datasets within the
Kermany dataset, we employed a two-stage Pachinko allo-
cation method. This method first generated a Beta distribu-
tion with a parameter of o = 0.4 over coarse labels for each
client. Subsequently, a Beta distribution with a parameter
of B = 10 was generated over the acceptable labels cor-
responding to the coarse labels. The class distribution and
the allocation of classes in the training and test sets were
kept consistent for both the coarse and fine label partitions
among clients. Table 1 provides a summary of the datasets,
their associated tasks, as well as the counts of clients and
models involved.

4.1.3 TransFed Setup

Following the experimental setup described in pFedHN,
we performed experiments using TransFed and benchmark
methods with 100 and 200 clients. For the Kermany
dataset, we considered 5% participation, while for the
RSNA dataset, we considered 10% participation. The im-
age classification task involved training each algorithm for
2000 communication rounds. PFedHN was trained for 4000
global communication rounds to ensure equivalent commu-
nication costs. For the detection task, the methods were
trained for 300 communication rounds.

Both tasks underwent optimization with an SGD opti-
mizer, employing a default learning rate (Ir) of 0.01 and a
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RSNA dataset

Kermany dataset

# distribution Pathological Pathological Beta Pathological Pathological Beta Beta

# no. of clients 100 200 100 100 200 100 200

Local-T 84.55+0.15 82.21£0.08 69.94+0.13 66.68+0.13 55.91£0.17 49.25+0.11 27.87£0.12 23.34£0.10
FedAvg-T 50.42+4.22 46.28+4.23 61.85+1.5 59.23+1.93 34.02+0.88 30.2040.95 38.64+0.22 34.89£0.45
FedPer-T 89.86+0.89 89.01+0.12 79.41£0.16 77.70+£0.14 67.2340.32 61.7240.16 37.1940.18 29.58+0.14
pFedHN-T 82.26+0.61 77.57£0.52 71.45+0.87 68.13£0.67 53.08+0.72 39.94+0.91 33.25+0.77 29.14£0.98
Fed TP 79.75+0.22 75.46+0.11 77.25+0.69 71.13+0.84 48.61+0.45 46.05+0.47 36.63+0.98 25.13+0.35
Vanilla -T 91.83£0.27 91.28+0.12 89.23+0.78 87.77+0.37 88.67+0.54 88.23+0.11 87.74£0.12 87.26+0.85
TransFed 92.67+0.74 91.34+0.86 88.49+0.38 88.16+0.33 89.80+0.23 87.73+0.74 87.34+0.92 86.98+0.64

Table 2. The TransFed method’s average test accuracy is computed alongside that of multiple transformer-based approaches, encompassing

different non-IID scenarios.

batch size (B) of 32. For TransFed, the Learnable genera-
tors were optimized using an SGD optimizer with a default
learning rate (/) set to 0.01. The experiments were con-
ducted on a cluster equipped with an NVIDIA Tesla V100
GPU, where the server and all clients were simulated.

0.6

Test Accuracy

04+

0.2 4 TransFed
—— localT

| —— FedPerT
pFedMe

0.0
o 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

Figure 3. Test accuracy and convergence behavior of TransFed
and other transformer-based methods on RSNA dataset.

4.2. Model Evaluation

We assessed model performance at 5-round intervals
over the last 300 global communication rounds. Mean ac-
curacy and standard deviation were computed. The average
accuracy for each evaluation step was determined by the ra-
tio of correct predictions to the total number of test images.

4.2.1 Performance Analysis

We conducted a comprehensive performance comparison
between TransFed and several well-known federated learn-
ing methods, designed initially based on CNN backbones.
Table 2 displays the average test accuracy of these algo-
rithms, highlighting TransFed’s remarkable performance
superiority over each of them. This result strongly sup-
ports the assertions made in our Introduction section: 1)
The FedAvg algorithm could impede the distinctive client
representations within transformer models, as evidenced
by Local-T outperforming FedAvg-T; and 2) TransFed’s
learned customized focal modulation effectively addresses
data heterogeneity. As depicted in Table 2, TransFed con-
sistently outperforms Vanilla customized-T across all set-

tings, thereby confirming that the “learn-to-tailor”” approach
leverages the strengths of focal-modulation in transformer
models.

To deepen our understanding, we conducted an evalua-
tion of test accuracy along with the curve depicting global
communication rounds in TransFed. This comparison was
extended to other transformer-based methods, as depicted in
Figure 3. The analysis reveals that TransFed demonstrates
a smooth curve and achieves higher accuracy compared to
alternative approaches.

4.2.2 Analysis of Different Adapted Parts

This study examined the effects of personalizing various
components of the transformer model. Specifically, we fo-
cused on four components: (1) the focal-modulation lay-
ers (our proposed method), (2) the Multi layer perceptron
layers, (3) the normalization layers, and (4) the encoder.
To maintain a fair comparison, we employed the identical
Learnable generator to generate the parameters associated
with these individual components while ensuring consis-
tency in the focalnet structures as described. The results
of this experiment are presented in Table 3. It is evident
from the table that personalizing the focal-modulation lay-
ers yields the best performance compared to personalizing
other components.  Furthermore, Table 3 illustrates that

Customized Part RSNA Kermany

Pathological Beta Pathological Beta
Focal Modulation 92.67+0.74 88.49+0.38 89.80+0.23 87.344+0.92
MLP Layers 88.45+0.14 86.36+0.17 87.76+0.14 85.97£0.16
Normalization Layers 89.56+0.45 86.55+0.27 86.23+0.37 87.22+0.39
Encoder 82.34+0.43 83.65+0.52 83.79+0.24 83.9540.37

Table 3. Average test accuracy of focal models with varying cus-
tomized components.

customizing the normalization layers yields superior perfor-
mance compared to tailoring the MLP layers and the abso-
lute encoder.

4.2.3 Generalization to Novel Clients

We thoroughly assessed our method’s capacity for gener-
alization, contrasting it with pFedMe, pFedHN, FedRod,
and a customized-T Vanilla approach on the Kermany and
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RSNA datasets under the Beta configuration. To simulate
a realistic scenario, 30% of the clients were randomly se-
lected as novel clients whose data had not been seen dur-
ing the training phase. FedPer fine-tuned the customized
parameters in the last classification layer, while pFedMe
learned all parameters to obtain customized models for each
client. In the case of pFedHN and TransFed, the customized
parameters had the option to choose between clients embed-
ding vectors with a dimension of 32 and the entire Learn-
able generator. As presented in Table 4, the outcomes sug-
gest that TransFed (Learnable generator) exhibits improved
resilience and adeptly adjusts to new clients in few epochs.

Method Personalization Client Accuracy (%) Convergence Time (epochs)

pFedMe All Parameters 783 8
pFedHN (Embedding) Clientwise Embedding 79.5 6
pFedHN (Hypernetwork) Whole Hypernetwork 80.2
FedRod Last Classification Layer 77.8

Vanilla Personalized-T Self-Attention Projection Matrices 76.7
FedTP Self Attention Layers 81.2

TransFed (Learnable Generator) Focal Modulation Layers 82.6

Lo w

w o

Table 4.
dataset.

Generalization Performance Comparison on RSNA

4.2.4 Analysis of Learnable generators

To thoroughly examine the impact of Learnable generators,
we conducted a comparative analysis between TransFed and
Vanilla customized-T. The latter method restores the pro-
jection parameters P; for each client locally, without the
utilization of Learnable generators. As depicted in Table
2, TransFed exhibits a significant advantage over Vanilla
customized-T, highlighting the crucial role of Learnable
generators in TransFed. We also observed that even when
Learnable generators solely generate the parameters of
the focal-modulation layer, they effectively encode client-
specific information into client embeddings z;. The Learn-
able generators have the capability to project client embed-
dings z; onto a manifold defined by the parameters ¢ of the
Learnable generator.

To delve deeper into the acquired client embeddings, we
utilized the t-SNE algorithm for their projection onto a 2-D
plane, as illustrated in Figure 4. Specifically, we distributed
each coarse class among five clients, ensuring that the cor-
responding fine classes were uniformly allocated among
these selected clients. We also trained TransFed and visual-
ized the client embeddings after training. Learned individ-
ual embeddings of clients who share common coarse labels
tend to cluster together, while those with dissimilar coarse
labels are mapped farther apart. This outcome provides
compelling evidence supporting our claim that Learnable
generators are highly effective for encoding customized in-
formation into client embeddings z;.

4.3. Ablation Study

Data heterogeneity, especially in label distribution, is
a significant challenge in customized federated learn-
ing. We conducted experiments on RSNA and Kermany

TSNE of learned client embedding by Transred on the RSNA dataset.

Pneumonia
Normal

Figure 4. Visualization of Client Embeddings Learned by
TransFed using t-SNE on the RSNA Dataset.

datasets, varying the parameter alpha of the Beta distribu-
tion. Smaller alpha values indicate a higher level of het-
erogeneity. TransFed consistently outperformed benchmark
methods (FedAvg-T, FedBN [16], and pFedHN [9]) in han-
dling label distribution heterogeneity. It demonstrated ro-
bustness even when other methods struggled to utilize client
heterogeneity effectively. We also explored the impact of
noise-induced feature imbalance on TransFed. By adding
Gaussian noise with increasing levels to each client, we
assessed TransFed’s performance. It consistently outper-
formed other methods in handling client-specific noise. The
number of focal-modulation blocks in TransFed was inves-
tigated, showing that increasing the number improved the
model’s ability to capture data heterogeneity and enhance
overall performance (Table 3). Consequently, we selected
eight as the default attention block number for TransFed in
subsequent experiments. We examined the impact of the
number of participating clients on model performance by
varying the sample rate. TransFed exhibited greater stabil-
ity than FedAvg-T, as shown in Figure 3. This highlights
the robustness of TransFed in handling different client par-
ticipation rates.

5. Conclusion and Future Work

We introduced TransFed, a transformer-based federated
learning framework that addresses the limitations of Fo-
cal Modulation in non-IID scenarios. TransFed overcomes
the degradation of Focal Modulation under traditional Fed-
erated Averaging (FedAvg) by adopting customized Focal
Modulation for each client. TransFed enhances the perfor-
mance of Focal Modulation by tailoring it to each client
through the use of a central Learnable generator. This
collaborative approach improves scalability and general-
ization. Experimental results demonstrate TransFed’s su-
periority in non-IID contexts, showcasing its effectiveness
against noise in local datasets. TransFed’s potential syner-
gies with advanced federated methods are promising. While
TransFed’s training speed lags behind CNN models, ongo-
ing research aims to enhance its computational and commu-
nication efficiency.
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